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Abstract

Historically, much of machine learning research has focused
on the performance of the algorithm alone, but recently
more attention has been focused on optimizing joint human-
algorithm performance. Here, we analyze a specific type of
human-algorithm collaboration where the algorithm has ac-
cess to a set of n items, and presents a subset of size k to the
human, who selects a final item from among those k. This
scenario could model content recommendation, route plan-
ning, or any type of labeling task. Because both the human
and algorithm have imperfect, noisy information about the
true ordering of items, the key question is: which value of k
maximizes the probability that the best item will be ultimately
selected? For k=1, performance is optimized by the algorithm
acting alone, and for k=n it is optimized by the human acting
alone. Surprisingly, we show that for multiple of noise mod-
els, it is optimal to set k in [2, n-1] - that is, there are strict
benefits to collaborating, even when the human and algorithm
have equal accuracy separately. We demonstrate this theo-
retically for the Mallows model and experimentally for the
Random Utilities models of noisy permutations. However, we
show this pattern is *reversed* when the human is anchored
on the algorithm’s presented ordering - the joint system al-
ways has strictly worse performance. We extend these results
to the case where the human and algorithm differ in their ac-
curacy levels, showing that there always exist regimes where
a more accurate agent would strictly benefit from collaborat-
ing with a less accurate one, but these regimes are asymmetric
between the human and the algorithm’s accuracy.

1 Introduction
Consider the following motivating example:

Alice is a doctor trying to classify a scan with one of
n different labels. Based on her professional exper-
tise and relevant medical information she has access
to, she is able to make some ranking over which of
these labels is most likely to be accurate. However,
she is not perfect, and sometimes picks the wrong la-
bel. She decides to use a machine learning algorithm
as a tool. The algorithm similarly has a goal of max-
imizing the probability of picking the correct label.
However, the algorithm and Alice rely on somewhat
*Work done while at Google.
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different information sources in making their predic-
tions: vast troves of data for the algorithm, and per-
sonal conversations with the patient for the human, for
example. Because of this, their rankings over the true
labels will often differ slightly. The algorithm com-
municates its knowledge by presenting its top k la-
bels to Alice, who picks her top label among those
that are presented. For what settings and what values
of k will Alice and the algorithm working together
have a higher chance of picking the right label?

If the algorithm were able to tell Alice exactly which label
she should pick (k = 1), then this problem would simply re-
duce to that of building a highly accurate machine learning
system. However, in the medical prediction setting, it is un-
realistic to assume that the algorithm can force Alice to pick
a particular label. If the algorithm presented all of the items
to Alice (k = n), then this would be equivalent to Alice
solving the task herself. In the case where n is large, consid-
ering each possible label may be infeasible. However, even
if Alice could consider all n items herself, we will show that
there are often settings where allowing the algorithm to nar-
row the set of items to k strictly increases the probability of
picking the correct item.

In human-algorithm collaboration more generally, often
the algorithm can provide assistance, but the human makes
the final decision. This is the case in other settings as well: a
diner trying to find the best restaurant, a driver trying to find
the best route, or a teacher trying to find the best pedagogical
method. This framework requires a shift in thinking: rather
than focus on optimizing the performance of the algorithm
alone, the goal is to build an algorithm that maximizes the
performance of the human-algorithm system.

In this paper, we will focus on the role of the noise distri-
butions that govern the human and algorithm. In particular,
we will be interested in how independent these are. In par-
ticular, we will be interested in how strongly the human’s
permutation is affected by the algorithm’s prediction, or the
strength of anchoring. In this paper, we will explore dif-
ferent models of noisy predictions, and give theoretical and
empirical results describing when the joint human-algorithm
system has a higher chance of picking the best item.

In Section 2, we describe the theoretical model that we
will explore and in Section 3 we connect our model to re-
lated works. Section 4 considers the case where both the

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

10030



human and the algorithm have identical accuracy rates, and
gives theoretical proofs for conditions where there are strict
benefits and strict harms to using a joint human-algorithm
system with the Mallows model, a model of noisy permuta-
tions over an ordering. This section also shows empirically
that these results hold much more broadly, including for the
Random Utilities Model. Next, Section 5 explores the case
where the human and algorithm can differ in their accuracy
rates, focusing on the case with exactly 3 items, of which
the algorithm selects 2 to be presented. In this setting, we
show that there is always a regime where a more accurate
player can strictly improve their accuracy by joining with a
less accurate partner. However, we show that this pattern is
asymmetric between the human and the algorithm: the hu-
man has a much wider range of algorithmic accuracy rates
that it is willing to partner with. Finally, Section 6 concludes
and discusses avenues for future work.

2 Models and Notation
2.1 Human-algorithm Collaboration Model
We assume that there are n items {x1, . . . xn}, and that the
goal is to pick item x1. Each item could represent labels for
categorical prediction, news articles of varying relevance, or
driving directions with variable levels of traffic, for example.
There are two actors: the first (A) narrows the items from n
total items to a top k < n items which are presented to the
second actor (H), which picks a single item among them.
One consistent assumption we will make is that the second
actor H is not able to directly access or choose from the full
set of items: this could be, for example, because k << n and
H is bandwidth-limited in how many items it can consider.
This model is quite broad: the two actors could be interact-
ing recommendation algorithms, for example, or sequential
levels of decision-making among human committees. How-
ever, the motivating example we will focus on in this paper
is when the first actor A is an algorithm and the second actor
H is a human. This setting naturally fits with the assumption
that H is bandwidth-limited, and also motivates the assump-
tion that A and H have differing orders for the items, drawn
from potentially differing sources of knowledge, but are un-
able to directly communicate that knowledge to each other.
This formulation also allows us to connect with the exten-
sive literature on human-algorithm collaboration, which we
discuss further in Section 3.

We will use πa, πh to denote the orderings of the algo-
rithm and human over the n items, with πa

i = xj meaning
that the algorithm ranks item xj in the ith place. We will use
πa
[k] to denote the k items that the algorithm ranks first (and

thus presents to the human) and πa
−[n−k] to denote the n− k

items that the algorithm ranks last (and fails to present to
the human). Both πa, πh are random variables drawn from
distributions πa ∼ Da, πh ∼ Dh. We will often refer to the
joint human-algorithm system as the combined system.

The distributions Da,Dh may be independent: this could
reflect the case where both the human and algorithm come
up with orderings separately, and then the algorithm presents
a set of items for the human to pick between, where the
human picks the best item according to their previously-

determined ranking. We refer to the case of independent or-
derings as the unanchored case. Alternatively, the distribu-
tions Da,Dh may be correlated. In particular, we will com-
pare the unanchored case with that of anchored ordering.
In this setting, the algorithm draws an ordering πa ∼ Da,
which then becomes the central ranking for the human –
we will describe what this means technically for different
noise models in the next section. This models settings where
the algorithm presents a ordering of items to the human,
rather than a set, which strongly biases the human. The
anchored setting implies a strong degree of correlation be-
tween the human and the algorithm’s ordering. We will re-
lax this correlation with the semi-anchored setting, where
the algorithm’s ordering πa influences the human’s ordering
πh, but less strongly in the anchored setting. In Section 4 we
present theoretical results for the anchored and unanchored
case, as well as experimental results for the semi-anchored
case, which we formalize further.

2.2 Noise Models
In this section, we introduce the noise models we will use
for Da,Dh, which governs how the algorithm and human
respectively arrive at noisy permutations over each of the n
items. Both of these noise models are standard in the liter-
ature, which is what prompted us to consider them in our
paper.

Mallows Model The first is the Mallows model, which
has been used extensively as a model of permutations (Mal-
lows 1957). The model has two components: a central
ordering π∗ (here, assumed to be the “correct” ordering
{x1, x2, . . . xn}) and an accuracy parameter ϕ > 0, where
higher ϕ means that the distribution more frequently re-
turns orderings that are close to the central ordering π∗.
The probability of any permutation π occurring is given
by 1

Z · exp (−ϕ · d(π∗, π)) where Z is a normalizing con-
stant

∑
π′∈P exp (−ϕ · d(π∗, π)) involving a sum over the

set all permutations P and d(π∗, π) is a distance metric
between permutations. In this work, we will use Kendall-
Tau distance, which is standard. In particular, the Kendall-
Tau distance is equivalent to the number of inversions in
π. An inversion occurs when element xi is ranked above
xj in the true ordering π∗, but is ranked below xj in π.
This can be roughly thought of as the number of “pairwise
errors” π makes in ordering each of the elements. In the
Mallows model, we model anchoring through Dh having
the central ordering D (π∗ = πa) , πa ∼ Da. In this way,
the human takes the algorithm’s presented ordering as the
“true” ordering and draws permutations centered on it. In
the unanchored setting the human draws their permutation
from a Mallows distribution centered at the correct ordering
D (π∗ = {x1, x2, . . . xn}).

Random Utility Model The Random Utility Model
(RUM) has similarly been extensively used as a model of
permutations (Thurstone 1927). In this model, item i has
some true value µi, where we assume µi is descending in
i. The human and algorithm only have access to noisy esti-
mates of these values, X̂a

i ∼ D(µi, σ
2) for some distribution
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D with variance σ2 (often assumed to be Gaussian, which
we will use in this paper). These noisy estimates are then
used to produce an order πa, πh in descending order of the
values {X̂a

i }, {X̂h
i }. In RUM, we model anchoring through

X̂h
i ∼ D(µj , σ

2
h), for where j is the index of item i in the

algorithm’s permutation πa. We model the semi-anchored
case by X̂h

i ∼ D(wa · µj + (1− wa) · µi, σ
2
h), where wa is

a weight parameter indicating how much the algorithm’s or-
dering anchors the human’s permutation, and j is the index
of item i in the algorithm’s permutation πa.

3 Related Work
Studying human-algorithm collaboration is a large, rapidly-
growing, and highly interdisciplinary area of research.
Some veins of research are more ethnographic, studying
how people use algorithmic input in their decision-making
(Lebovitz, Levina, and Lifshitz-Assaf 2021; Lebovitz,
Lifshitz-Assaf, and Levina 2020; Beede et al. 2020; Yang
et al. 2018; Okolo et al. 2021). Other avenues work on de-
veloping ML tools designed to work with humans, such
as in medical settings (Raghu et al. 2018) or child wel-
fare phone screenings (Chouldechova et al. 2018). Finally,
and most closely related to this paper, some works de-
velop theoretical models to analyze human-algorithm sys-
tems, such as (Rastogi et al. 2022; Cowgill and Stevenson
2020; Bansal et al. 2021a; Steyvers et al. 2022; Madras,
Pitassi, and Zemel 2018). Bansal et al. (2021b) proposes
the notion of complementarity, which is achieved when a
human-algorithm system together has performance that is
strictly better than either the human or the algorithm could
achieve along. (Steyvers et al. 2022) uses a Bayesian frame-
work to model human-algorithmic complementarity, while
(Donahue, Chouldechova, and Kenthapadi 2022) studies the
interaction between complementarity and fairness in joint
human-algorithm decision systems, and (Rastogi et al. 2022)
provides a taxonomy of how humans and algorithms might
collaborate. (Kleinberg and Raghavan 2021) is structurally
similar to ours in that it uses the Mallows model and RUM
model to give theoretical guarantees for performance re-
lated to rankings of items. However, its setting is human-
algorithm competition rather than cooperation, where the
question is whether it is better to rely on an algorithmic tool
or more noisy humans to rank job candidates.

One related area of research is “conformal prediction”
where the goal is to optimize the subset that the algorithm
presents to the human, such as in (Straitouri et al. 2022;
Wang, Joachims, and Rodriguez 2022; Angelopoulos et al.
2020; Vovk, Gammerman, and Shafer 2005; Babbar, Bhatt,
and Weller 2022; Straitouri and Rodriguez 2023). This for-
mulation is structurally similar to ours, but often takes a dif-
ferent approach (e.g. optimizing the subset given some pre-
diction of how the human will pick among them). Another
related area is “learning to defer”, where an algorithmic tool
learns whether to allow a human (out of potentially multiple
different humans) to make the final decision, or to make the
prediction itself (e.g. (Hemmer et al. 2022; Madras, Pitassi,
and Zemel 2018; Raghu et al. 2019)). Finally, a third related
area is multi-stage screening or pipelines, where each stage

narrows down the set of items further (e.g. (Blum, Stangl,
and Vakilian 2022; Wang and Joachims 2023; Dwork, Il-
vento, and Jagadeesan 2020; Bower et al. 2022)). (Hron et al.
2021) specifically studies the case with multiple imperfect
nominators who each suggest an action to a ranker, who
picks among them (and explores how to optimize this set-
ting).

Some papers study how humans rely on algorithmic pre-
dictions - for example, (De-Arteaga, Fogliato, and Choulde-
chova 2020) empirically studies a real-life setting where the
algorithm occasionally provided incorrect predictions and
explores how the human decision-maker is able to overrule
its predictions, while (Benz and Rodriguez 2023) studies un-
der what circumstances providing confidence scores helps
humans to more accurately decide when to rely on algorith-
mic predictions. (Mclaughlin and Spiess 2023) studies a case
where the human decision-maker views the algorithm’s rec-
ommendation as the “default” - similar to our “anchoring”
setting, while (Vasconcelos et al. 2023) studies how explana-
tions can reduce the impact of anchoring, and (Fogliato et al.
2022) empirically studies the impact of anchoring in a med-
ical setting. (Rambachan et al. 2021) studies how to iden-
tify human errors in labels from observational data, while
(Alur et al. 2023) explores how an algorithmic system can
detect when a human actor has access to different sources
of information than the algorithm itself. Also in a medical
setting, (Cabitza, Campagner, and Sconfienza 2021) stud-
ies how “interaction protocols” with doctors and algorith-
mic tools can affect overall accuracy. (Chen et al. 2023) em-
pirically explores how human rely on their intuition along
with algorithmic explanations in making decisions. (Mozan-
nar et al. 2023) explores a setting where an LLM is making
recommendations of code snippets to programmers, with the
goal of making recommendations that are likely to be ac-
cepted. Related to complementarity, (Guszcza et al. 2022)
describes the principles of “hybrid intelligence” necessary
for optimizing human-algorithm collaboration.

There has also been a series of work looking more specif-
ically at human-algorithm collaboration in bandit settings.
Gao et al. (2021) learns from batched historical human data
to develop an algorithm that assigns each task at test time to
either itself or a human. Chan et al. (2019) studies a setting
where the human is simultaneously learning which option
is best for them. However, their framework allows the algo-
rithm to overrule the human, which makes sense in many
settings, but is not reasonable in some settings like as our
motivating medical example. Bordt and Von Luxburg (2022)
formalizes the problem as a two-player setting where both
the human and algorithm take actions that affect the reward
both experience. (Agarwal and Brown 2022) and (Agarwal
and Brown 2023) study the case where a “menu” of k arms
out of n are presented to the human, who selects a final one
based on a preference model. This setting differs from ours
in the model of human preferences over items, as well as the
goal of optimizing for the algorithm’s overall regret. (Yao
et al. 2023) studies a related setting where multiple content
creators each recommend a top k set of items to humans,
who pick among those k according to a RUM - key differ-
ences are that content creators are competing with each other
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and also learning their own utility functions over time. (Tian
et al. 2023) considers the case where the human’s mental
model of the algorithm is changing over time, and models
this as a dynamical system.

Additionally, some work has used the framework of the
human as the final decision-maker and studied how to dis-
close information so as to incentivize them to take the
“right” action. Immorlica et al. (2018) studies how to match
the best regret in a setting where myopic humans pull the fi-
nal arm. Hu et al. (2022) studies a related problem with com-
binatorial bandits, where the goal is to select a subset of the
total arms to pull. Bastani et al. (2022) investigates a more
applied setting where each human is a potential customer
who will become disengaged and leave if they are suggested
products (arms) that are a sufficiently poor fit. Kannan et al.
(2017) looks at a similar model of sellers considering se-
quential clients, specifically investigating questions of fair-
ness. In general, these works differ from ours in that they
assume a new human arrives at each time step, and so the al-
gorithm is able to selectively disclose information to them.

4 Impact of Anchoring on Joint Performance
In this section, we explore the impact of anchoring on the
performance of the joint system. Our goal is complementar-
ity as defined in (Bansal et al. 2021b): when the joint system
has a higher chance of picking the best item than either the
human or algorithm alone. In particular, we will show that
complementarity is impossible for anchored orderings, no
matter what number of k items are or the relative accuracy
levels of the human and algorithm ϕh, ϕa. By contrast, we
will show that complementarity is possible with unanchored
orderings even when the human and algorithm have equal
accuracy rates, so long as the number as presented items
k = 2. The first subsection describes theoretical tools that
hold for all probability distributions, the next two subsec-
tions gives theoretical results for the Mallows model distri-
bution, while the last subsection extends these results exper-
imentally for the RUM, including the semi-anchored setting.

4.1 Preliminary Definitions and Tools
First, this subsection describes preliminary tools we will
need in order to prove the anchoring results in later sections.
Note that every result in this subsection holds for all distri-
butions of human and algorithmic permutations Dh,Da, and
regardless of the level of anchoring. However, we will find
these tools useful for analysis in later subsections with more
specific assumptions on Dh,Da.

First, Definitions 1 defines “good events” where the joint
human-algorithm system picks the best arm, where the al-
gorithm alone would not have, and Definition 2 defines“bad
events”, where the joint system fails to pick the best arm,
where the algorithm alone would have. Note that these could
be identically defined with respect to when the human would
have picked the best arm. However, defining events relative
to the algorithm will make later proofs technically simpler.

Definition 1. A “good event” is a pair of permutations
ρa, ρh where the joint human-algorithm system selects the

best arm x1 when the algorithm alone would not have picked
it. The “good event” occurs when in one of two cases holds:

1. The algorithm does not rank x1 first but includes it in the
k items it presents, while the human ranks item x1 first
(ρa1 ̸= x1, x1 ∈ ρa[k], ρ

h
1 = x1)

2. Identical to case 1, but instead the human ranks x1 in
position m ≥ 2, and the algorithm removes all of the
items the human had ranked before it (ρa1 ̸= x1, x1 ∈
ρa[k], ρ

h
m = x1, ρ

h
[m−1] ⊆ ρa−[n−k])

Definition 2. A “bad event” is a pair of permutations
πa, πh where the joint human-algorithm system fails to pick
the best arm, where the algorithm alone would have picked
it.

A “bad event” occurs when the algorithm ranks x1 first,
but the human does not (πa

1 = x1, π
h
1 ̸= x1) and it is not

the case that the human ranks x1 in position m, and the
algorithm removes all of the items the human had ranked
before it (not that πa

1 ∈ πa
k , π

h
m = x1, π

h
[m−1] ⊆ πa

−[n−k]).

Complementarity occurs whenever the total probability of
“good events” is greater than the total probability of “bad
events”.

Lemma 1 states that there exists a bijective mapping be-
tween “good events” and “bad events” - that is, for every
“good event” there is a unique corresponding “bad event”.
As an immediate corollary, we see that there must be equal
numbers of good and bad events. These results show the
importance of the probability distributions Da,Dh: given
a uniform distribution over permutations, the good events
and bad events are equally likely, so any complementarity
must be driven by certain permutations being more likely
than others.

Lemma 1. For any human algorithm system with k < n,
there is a bijective mapping between “good events” and
“bad events”.

Corollary. There are equal numbers of “good events” and
“bad events”.

While the full proof of Lemma 1 is deferred to the full
version1, the relevant bijective mapping will be useful for
later analysis. We define it as “best-item-mapping”, a func-
tion mapping from “good events” to “bad events” by swap-
ping the indices of the best item x1 and whichever item xj

that the algorithm had ranked first instead of x1.

Definition 3 (Best-item mapping). Take any pair of order-
ings ρa, ρh such that

ρa1 = xj ρai = x1 ρhm = x1 ρhℓ = xj

for xj ̸= x1. Then, we construct the new orderings πa, πh by
flipping the location of items x1, xj , keeping all other items
in the same location:

πa
1 = x1 πa

i = xj πh
m = xj πh

ℓ = x1

1https://arxiv.org/abs/2308.11721
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4.2 Anchoring Always Causes Worse
Performance

The preliminary results for “good events” and “bad events”
in the previous subsection hold for all probability distribu-
tions Da,Dh and all types of anchoring between these dis-
tributions. In this and the next subsection, we will focus on
the Mallows model and give conditions such that the joint
system will perform strictly worse or better than human or
algorithm alone.

Theorem 1 below, begins by showing that when anchoring
is present, the joint system always has strictly worse accu-
racy than the algorithm alone - no matter how many items
are presented k or the relative accuracy rates of the human
and algorithm ϕa, ϕh. This is a quite general impossibility
result, indicating that a wide range of conditions lead to un-
desirable performance.

Theorem 1. In the anchored setting with Mallows model
distributions for permutations, the probability of picking the
best arm strictly decreases in the joint human-algorithm sys-
tem, as compared to the algorithm alone. This holds for any
k < n, no matter the accuracy rates for the algorithm and
human ϕa, ϕa.

While we defer a full proof of Theorem 1 to the full ver-
sion, we give an informal proof sketch below:

Proof sketch. This proof uses the best-item mapping from
Definition 3. In particular, we take any “good event”, ap-
ply the best-item mapping, and show that the corresponding
“bad event” is strictly more likely than the “good event”.

Given the Mallows model, a permutation π is more likely
if they involve fewer inversions (instances where i < j but
πi < πj : a lower-valued item is ranked above a higher-
valued item). Best-item mapping works by flipping the rank
of the best item x1 and xj , defined as whichever item the
algorithm ranked first in the “good event”. This mapping
changes the relative ranking of x1 and xj , but also the pair-
wise ranking of every item that is in between xj and x1. The
full proof proves that this process always strictly decreases
the total number of inversions in the algorithm’s ranking,
relative to the “good event”.

Next, we consider the human’s permutation. Best-item
mapping also flips the indices of x1, xj in the human’s per-
mutation. However, in the anchored setting the human’s dis-
tribution Dh is defined relative to the algorithm’s presented
permutation. Therefore, flipping the indices of x1, xj for the
algorithm is equivalent to relabeling the items, meaning that
the human’s “good event” permutation is exactly as likely
as the human’s “bad event” ordering, given the changed per-
mutation. Because of this, our results hold no matter the ac-
curacy rates of the human and algorithm ϕh, ϕa.

4.3 Strictly Better Performance is Always
Achievable Without Anchoring

In the previous section, we showed that complementarity
is impossible in the anchored setting under a wide range
of conditions. In this section, we will give specific condi-
tions for when complementarity is achievable in the unan-
chored setting: specifically, whenever the human and algo-

rithm have equal accuracy rates ϕa = ϕh and the algorithm
presents k = 2 items. We consider this setting particularly
important because it is extremely achievable: even if the hu-
man is very bandwidth limited, it is extremely reasonable to
assume that they are able to consider a finalist set of 2 items
to pick between.

Theorem 2. In the unanchored setting with permutations
governed by the Mallows model, the probability of picking
the best arm strictly increases in the joint human-algorithm
system when exactly 2 items are presented (k = 2) and ϕa =
ϕh.

While we will again defer a full proof to the full version,
we will offer a proof sketch:

Proof sketch. Similar to Theorem 1, we use the best-item
mapping to map between good and bad events. However,
we show that in the unanchored setting, this mapping always
results in a “bad event” that is equally or less likely than the
corresponding “good event”.

First, we consider the algorithm’s permutations. Here, we
show that best-item mapping actually decreases the total
number of inversions by exactly one, making the “bad event”
ordering for the algorithm strictly more likely. Decreasing
the number of inversions is the opposite of the overall goal of
this proof; the requirement that k = 2 is what upper bounds
this number of inversions by exactly 1.

However, we show that this effect is counteracted by the
human’s permutation. In the unanchored setting, the hu-
man’s permutation is completely independent of the algo-
rithm’s permutation, so the analysis is much more involved
than in Theorem 1. Specifically, we consider each “good
event” case in Definition 1 and show that best-item mapping
always increases the total number of inversions by at least
one.

Because the human and algorithm are assumed to have
equal accuracy rates, the increase in inversions from the
human’s permutations cancels out the decrease in inver-
sions from the algorithm’s permutations, showing that the
“bad event” is no more likely than the corresponding “good
event”.

The proof concludes by constructing an example where
the “good event” is strictly more likely than the “bad event”,
showing that the total probability of “good events” is strictly
more likely than the total probability of “bad events”.

Finally, we wish to comment briefly on the permutation
distributions Da,Dh. Both the statements of Theorem 1 and
Theorem 2 are specific to the Mallows model. However, the
proof technique relies very weakly on the Mallows assump-
tion. Specifically, the only property that is necessary is that
the best-item mapping in Definition 3 weakly decreases (for
anchored) or increases (for unanchored) the probability of
permutations occurring. For Mallows model, this is satisfied
because the probability of a permutation occurring is gov-
erned by the number of inversions present. Other probability
distributions satisfying this property would show identical
properties to those proven in Theorems 1 and 2.
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4.4 Numerical Extensions and Partial Anchoring
In this subsection, we extend the results of the previous sub-
sections in two ways. First, we consider the Random Util-
ity Model, another commonly used model of noisy permuta-
tions over items. Secondly, we model cases where the human
is influenced by the algorithm’s presented ranking of items,
but not completely anchored on it - the semi-anchored case.
Specifically, we model the semi-anchored case as there hu-
man draws their mean from a noise distribution with mean
wa · µj + (1 − wa) · µi, where wa is a weight parameter
indicating how much the algorithm’s ordering anchors the
human’s permutation, and j is the index of item i in the al-
gorithm’s permutation πa. In this way, wa = 0 reflects the
unanchored case, while wa = 1 reflects the anchored case.

Figure 1 demonstrates numerical simulations for the
RUM, given decreasing weight wa. Note that the x-axis
gives k number of items presented: k = 1 is the accuracy
of the algorithm alone, while k = 5 gives the accuracy of
the human considering all items (but potentially anchored
on the algorithm’s ordering).

The top figure has wa = 1, reflecting complete anchoring.
In this case, we see accuracy is maximized at k = 1, which is
when the algorithm acts alone. This result matches with The-
orem 1’s findings for the Mallows model: in a completely
anchored setting, complementarity is impossible. Note that
Figure 1’s demonstrates even stronger results: that the ac-
curacy of the joint system is decreasing in k the number of
items presented.

The bottom figure has wa = 0 (no anchoring). In this
case, we note that accuracy is identical at k = 1, k = n =
5: the human and algorithm have equal accuracy in these
plots and are independent, so they each have equal accuracy
when acting alone. Here, we see that the expected accuracy
at k = 2 is greater than the accuracy at k = 1, k = 5,
again matching the results from Theorem 2 for the Mallows
model. However, we again see stronger results in Figure 1,
which shows that for the given parameters the joint system
exhibits complementarity for all k ∈ [2, n− 1].

Finally, the middle figure describes cases when the hu-
man is partially anchored on the algorithm and exhibits re-
sults intermediate to the top and bottom figures. Specifically,
it seems like complementarity occurs whenever k is “suffi-
ciently small” so the benefits of having the human’s ranking
outweighs the harms of anchoring.

5 Asymmetric Complementarity Zones
Without Anchoring

In previous sections, Theorem 1 showed that complemen-
tarity is impossible for the Mallows model, regardless of
the levels of accuracy for the human and algorithm, while
Theorem 2 showed that complementarity is possible in the
unanchored case with identical accuracy rates ϕh = ϕa

with k = 2. In this section, we will further explore the
unanchored setting, but allowing accuracy rates to differ.
Specifically, we will show that there always exist regions of
complementarity: cases where a more accurate agent would
strictly increase its accuracy by collaborating with a less ac-
curate partner. However, these regions are asymmetric: it is

Figure 1: 10 trials, 5 · 104 simulations. RUM Da
1 = N(µ =

0.5, σ2 = 0.05),Da
i>1 = N(µ = 0.1, σ2 = 0.05).

more likely that a more accurate human would gain from
collaborating than a more accurate algorithm.

5.1 Provable Benefits From Joining With a Less
Accurate Partner

Throughout this section, we will model the algorithm and
human permutations as coming from a Mallows model. For
analytical tractability, our theoretical results will focus on
the case with n = 3, k = 2.

First, Lemma 2 shows that, no matter how accurate the
algorithm is, there always exists a (slightly) more accurate
human such that the joint system is strictly more accurate
than either (achieving complementarity).

Lemma 2 (More accurate human). Consider n = 3, k =
2 where the human and algorithm both have unanchored
Mallows models with ϕa ̸= ϕh. Then, there exists a re-
gion of complementarity where a more accurate human ob-
tains higher accuracy when collaborating with a less ac-
curate algorithm. Specifically, for all ϕa > 0, so long as
ϕh ∈ [ϕa,min(1.3 · ϕa, ϕa + 0.3)] the joint system has bet-
ter performance than either the human alone or algorithm
alone.

For context, a Mallows model with n = 3 recovers the
correct permutation [x1, x2, x3] with probability 48% of the
time with ϕ = 1 and 57% of the time with ϕ = 1.3, so
the regions in Lemma 2 represent moderate but meaningful
differences in accuracy levels.
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Figure 2: Above: contour plot showing increase or decrease
in accuracy over maximum of human, algorithm accuracy
given a Mallows model distribution with n = 3, k = 2. Pos-
itive regions indicate complementarity (blue). Below: RUM
with Normal distribution with n = 10, k = 2. x and y axes
show increasing accuracy (decreasing variance).

Next, Lemma 3 gives a corresponding result for when the
algorithm is more accurate than the human. However, this
region differs substantially from that in Lemma 2: it is sub-
stantially narrower, indicating a much smaller range where
complementarity is possible.

Lemma 3 (More accurate algorithm). However, the roles of
the human and algorithm are not symmetric: for the same
setting as in Lemma 2, the zone of complementarity is much
narrower. Specifically, complementarity is possible for ϕa ∈
[ϕh, ϕh · (1+ 0.01), for all ϕh ≤ 1, but is never possible for
any ϕa ≥ ϕh + 0.15 for ϕa ≥ 1.

These results are illustrated in Figure 2 (top). The contour
plot gives the accuracy of the joint human-algorithm system,
which is strictly increasing in ϕa, ϕh. Overlaid in blue is the
analytically derived region of complementarity. The regions
derived in Lemmas 2 and 3 are overlaid in red and white,
respectively. Note that the red region encompasses almost
all of the zone of complementarity, while the white region is
comparatively minuscule.

Lemma 4 explains these results: for this setting, the per-
formance of the joint system is always higher when the more
accurate actor is the human, rather than the algorithm. For
intuition for this asymmetry, consider the marginal impact
of a more accurate algorithm - it will be slightly more likely
to include the best item x1 among the k = 2 it presents.
However, once the algorithm is sufficiently accurate, it will
almost always present x1, so increasing accuracy will have
diminishing returns. A more accurate human will be more
likely to select the best item x1, given that it is presented
- which will more directly make the joint human-algorithm

system more accurate.
This explains why the region of complementarity is larger

when the human is the more accurate one - the human’s ac-
curacy more directly increases the accuracy of the joint sys-
tem, which outperforms the more accurate actor (here, the
human) for a wider range of accuracy differentials.
Lemma 4. Given any two sets of Mallows accuracies ϕ1 >
ϕ2, for n = 3, k = 2, the joint system always has strictly
higher accuracy whenever ϕa = ϕ1 > ϕh = ϕ2.

5.2 Numerical Extensions
Finally, Figure 2 (below) extends these results numerically.
This figure extends the theoretical results in multiple ways:
first, it show n = 10, which means substantially more items
are presented than in the top figure. Holding k = 2, this
means that the algorithm has a “harder” job to identify the
k = 2 best arm. Secondly, the bottom figure shows the Ran-
dom Utility Model of permutations, where greater accuracy
levels are reflected by smaller standard deviations in noise.
Similar to Section 4, we include this to show study how our
theoretical results for the Mallows model extend to those
RUM.

Note that even in this setting, we see qualitatively similar
results to the top figure: there always exists a region of com-
plementarity: specifically, in regions of low accuracy for the
algorithm and human (bottom left of the figure) this region
is largest, and this region roughly extends as the human and
algorithm accuracy increase (diagonally to the upper right).
However, we note that this region of complementarity is
asymmetric: a more accurate human is more likely to benefit
from partnering with a less accurate algorithm. That is vi-
sually apparent from how much further the zone of comple-
mentarity extends up the y axis (human covariance). Again,
this is because increases in the accuracy of the human more
directly increase the accuracy of the joint human-algorithm
system.

6 Discussion and Future Work
In this paper, we have proposed a model of human-algorithm
collaboration where neither the human or algorithm has ul-
timate say, but where they successively filter the set of n
items down to k and finally a single choice. We focus on
how the noise distributions Da,Dh influence whether the
combined system has a higher chance of picking the best
(correct) item. Future work extend our results to a wider
range of noise model. Other interesting extensions could
consider more complex models of human-algorithm collab-
oration - for example, cases where the human and algorithm
can “vote” on the ordering of items, or other models of inter-
action. Additionally, they could explore cases where either
the human or the algorithm is inherently biased - for exam-
ple, when the algorithm has a central distribution that does
that rank the best item first.
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